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Abstract
Following a previously developed method, the problem of a particle scattered
by a double barrier is studied. Instead of the simple transmission or reflection,
the more difficult case of the arrival in the region between the barriers is
considered and solved explicitly by using matrix methods.

PACS numbers: 02.30.Rz, 03.65.Nk

1. Introduction

It is well known that the integral Schrödinger equation for the propagator takes, after a Laplace
transformation, the form of a Fredholm integral equation of the second kind [1]. Recently,
in a one-dimensional scheme, a method has been developed in order to obtain the solution in
zero potential regions, taking into account boundary conditions in a suitable way [2]. Typical
applications are those of transmission and reflection by barriers, and in general of scattering
[3]; an extension to a wider kind of kernels is possible, too [4].

We would like to recall that the quantum-mechanical propagator is a fundamental object in
physics. It satisfies the Schrödinger equation with a fixed initial condition and so it is therefore
an intrinsic feature of the physical system [5], independent of the wavefunction for t = 0.
Among the various non-standard applications of the propagator, we point out a satisfactory
definition of tunnelling time [3, 6], the study of the interaction of a metastable system with a
thermal bath [7], the overcoming of perturbative expansions in the study of coupling effects
in quantum field theory [8]. We refer to the literature for a complete discussion about this
subject [9, 10].

In short, it is not necessary to solve the equation inside the potential, in order to fulfil
boundary conditions; in contrast, only a formal expression of this solution is needed. To show
this, a large use of the matrix theory is made, such as partitioning techniques and properties
of rank-one matrices, among which a theorem previously established by authors [3] plays a
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basic role. Therefore a great simplification arises, and the solution is found in terms of infinite
determinants, which admit a kind expression as an entire power series.

In the following, the theory is extended to obtain the wavefunction in the region between
two potential barriers. This is an important improvement with respect to the pure transmission
or reflection, allowing the application to problems of trapping and localization of a particle, as
well as the decay and evolution of a metastable state; moreover, tunnelling times and scattering
characteristics are important parameters in designing a large class of recently developed
optoelectronic devices [11, 12].

In section 2, the method of obtaining the integral equation is discussed. In section 3,
the full calculation is developed for our model, and in section 4 the evaluation of infinite
determinants is outlined. In section 5 limiting cases are considered, and in section 6 an
application is shown when the barriers are approximated by delta functions.

2. The integral equation

Let H0 be a Hamiltonian for which the propagator G0 is known, and V a general potential.
The Schrödinger equation for the system with Hamiltonian H = H0 + V is

ih̄
d

dt
|ψ(t)〉 = H |ψ(t)〉 (1)

where |ψ(t)〉 is the vector representing the dynamical state of our system. A standard procedure
leads to

|ψ(t)〉 = e− i
h̄
H0t |ψ(0)〉 − i

h̄

∫ t

0
dτ e− i

h̄
H0(t−τ)V |ψ(τ)〉 (2)

that is the Schrödinger equation in an integral form. By using the representation where the
position variables are diagonal [13] (namely, passing from the state vectors |ψ(t)〉 to the
wavefunctions ψ(x, t)), this equation is easily written in terms of the propagators G and G0:∫

dη ψ0(η)G(x, t; η) =
∫

dη ψ0(η)G0(x, t; η) − i

h̄

∫
dη ψ0(η)

×
[∫ t

0
dτ

∫ ∞

−∞
dξ G0(x, t − τ ; ξ)V (ξ)G(ξ, τ ; η)

]
(3)

where

G(x, t; η) = 〈x|e− i
h̄
H t |η〉, G0(x, t; η) = 〈x|e− i

h̄
H0t |η〉 (4)

and ψ0 is the wavefunction for t = 0. In view of the future use of the Laplace transform, it is
better to perform Wick rotation to imaginary time t → −it [14], and the following equation
for the propagator G arises:

G(x, t; η) = G0(x, t; η) − 1

h̄

∫ t

0
dτ

∫ ∞

−∞
dξ G0(x, t − τ ; ξ)V (ξ)G(ξ, τ ; η). (5)

After a Laplace transform [15]

L{ψ(x, t)} =
∫ ∞

0
dt ψ(x, t) exp (−st) = ψ(x, s) (6)

a Fredholm equation of the second kind is obtained [16]:

G(x, s; η) = G0(x, s; η) − 1

h̄

∫ ∞

−∞
dξ G0(x, s; ξ)V (ξ)G(ξ, s; η). (7)
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Figure 1. The double barrier.

Let us suppose that H0 corresponds to the free particle, so we have, in imaginary time [13],

G0(x, t; η) =
√

m

2πh̄t
exp

[
− m

2h̄

(x − η)2

t

]
(8)

and therefore

G0(x, s; η) = c

2

e−c|x−η|√s

√
s

, c =
√

2m

h̄
. (9)

By defining

G0(x, s; η) = φ(x), G(x, s; η) = ψ(x), λ = c

2h̄

1√
s
, k = c

√
s, (10)

equation (7) can be written in short, assuming that V has a finite range (a, d),

ψ(x) + λ

∫ d

a

dξ e−k|x−ξ |V (ξ)ψ(ξ) = φ(x) (11)

where the variable s, considered as a parameter, is omitted, since now we are mainly interested
in the space coordinates.

3. The double barrier

Let us now consider a particular form of the potential V , as shown in figure 1. It consists of
two barriers V (1) and V (2) with finite support, being V (1) �= 0 in (a, b) and V (2) �= 0 in (c, d).
The particle is initially on the left of the barrier V (1), and we are interested in its transmission
into the region between the two barriers: namely,

η < a, b < x < c. (12)

Equation (11) now reads, for general x,

ψ(x) + λ

∫ b

a

dξ e−k|x−ξ |V (1)(ξ)ψ(ξ) + λ

∫ d

c

dξ ′ e−k|x−ξ ′ |V (2)(ξ ′)ψ(ξ ′) = φ(x) (13)

and, between the barriers,
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ψ(x) + λ e−kx

∫ b

a

dξ ekξV (1)(ξ)ψ(ξ) + λ ekx

∫ d

c

dξ ′ e−kξ ′
V (2)(ξ ′)ψ(ξ ′) = φ(x), (14)

which is the equation we have to solve.
Our strategy consists in solving equation (13) in (a, b) and (c, d) (formally, and not

explicitly), then introducing the results into equation (14). In these intervals, we denote the
position variables as y and z, respectively. When y ∈ (a, b),

ψ(y) + λ

∫ b

a

dξ e−k|y−ξ |V (1)(ξ)ψ(ξ) + λ eky

∫ d

c

dξ ′ e−kξ ′
V (2)(ξ ′)ψ(ξ ′) = φ(y) (15)

and when z ∈ (c, d),

ψ(z) + λ e−kz

∫ b

a

dξ ekξV (1)(ξ)ψ(ξ) + λ

∫ d

c

dξ ′ e−k|z−ξ ′ |V (2)(ξ ′)ψ(ξ ′) = φ(z). (16)

A discretization procedure, with i, j = 1, . . . , N in (a, b), s, l = 1, . . . ,M in (c, d), dξ =
(b − a)/N, dξ ′ = (d − c)/M, yi = a + i dξ, zs = c + s dξ ′, fi = f (yi), fs = f (zs), leads to

ψj +
N∑

i=1

dλi e−kyij ψi + ekyj

M∑
s=1

dλ′
i e−kzs ψs = φj (17)

ψl + e−kzl

N∑
i=1

dλi ekyi ψi +
M∑

s=1

dλ′
i e−kzsl ψs = φl (18)

where dλi = λV
(1)
i dξ, dλ′

s = λV (2)
s dξ ′, yij = |yi − yj |, zsl = |zs − zl|. It is understood that

the limits N → ∞,M → ∞ will be performed at the end.
Now we write these equations in vectorial form:

A1ψ1 + ϕ+
1(ṽ

−
2 ψ2) = φ1

ϕ−
2 (ṽ+

1ψ1) + A2ψ2 = φ2,
(19)

where the bold symbols denote vector or matrix (˜= transpose), the indices 1 and 2 represent
two subspaces N and M-dimensional, A1 and A2 the two matrices (N × N) and (M × M),
respectively,

A1 =




1 + dλ1 dλ2 e−ky12 . . . dλN e−ky1N

dλ1 e−ky12 1 + dλ2 . . . dλN e−ky2N

...
...

...
. . .

dλ1 e−ky1N dλ2 e−ky2N . . . 1 + dλN


 ,

A2 =




1 + dλ′
1 dλ′

2 e−kz12 . . . dλ′
M e−kz1M

dλ′
1 e−kz12 1 + dλ′

2 . . . dλ′
M e−kz2M

...
...

...
. . .

dλ′
1 e−kz1M dλ′

2 e−kz2M . . . 1 + dλ′
M


 ,

(20)
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and ψ1, ψ2, ϕ±
1 , ϕ±

2 ,v±
1 ,v±

2 , φ1, φ2, the vectors

ψ1 =




ψ1

ψ2

...

ψN


 , ψ2 =




ψ1

ψ2

...

ψM


 , ϕ±

1 =




e±ky1

e±ky2

...

e±kyN


 , ϕ±

2 =




e±kz1

e±kz2

...

e±kzM


 ,

v±
1 =




dλ1 e±ky1

dλ2 e±ky2

...

dλN e±kyN


 , v±

2 =




dλ′
1 e±kz1

dλ′
2 e±kz2

...

dλ′
M e±kzM


 , φ1,2 = c

2

ekη

√
s
ϕ−

1,2.

(21)

The product between the matrices is intended to be performed in the usual way, row by column.
Let us now define the matrices, (M × N) and (N × M), respectively,

U 21 = ϕ−
2 ṽ+

1 =




dλ1 e−kζ11 dλ2 e−kζ12 . . . dλN e−kζ1N

dλ1 e−kζ21 dλ2e−kζ22 . . . dλN e−kζ2N

...
...

...
. . .

dλ1 e−kζM1 dλ2 e−kζM2 . . . dλN e−kζMN


 , (22)

U 12 = ϕ+
1 ṽ

−
2 =




dλ′
1 e−kζ11 dλ′

2 e−kζ21 . . . dλ′
M e−kζM1

dλ′
1 e−kζ12 dλ′

2 e−kζ22 . . . dλ′
M e−kζM2

...
...

...
. . .

dλ′
1 e−kζ1N dλ′

2 e−kζ2N . . . dλ′
M e−kζMN


 , ζli = zl − yi. (23)

In this way, equation (19) becomes(
A1 U 12

U 21 A2

)(
ψ1

ψ2

)
=

(
φ1

φ2

)
(24)

giving (
ψ1

ψ2

)
=

(
A1 U 12

U 21 A2

)−1 (
φ1

φ2

)
=

(
α β

γ δ

) (
φ1

φ2

)
(25)

and α, β, γ, δ can be found by the method of partitioning [17]. The result is

α = A−1
1 + A−1

1 U 12DU 21A
−1
1 , β = −A−1

1 U 12D,

γ = −DU 21A
−1
1 , δ = D,

(26)

and, by assuming that the inverses A−1
1 and A−1

2 exist [2], the matrix D is given by

D = (A2 − U 21A
−1
1 U 12)

−1. (27)

Let us return to equation (14), whose discretized form is

ψ(x) + e−kx

N∑
i=1

dλi ekyi ψi + ekx

M∑
s=1

dλ′
s e−kzs ψs = φ(x). (28)
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By using equation (25) and recalling definitions (9), (10) and (21), we obtain

ψ(x) = φ(x) − e−kx
(
ṽ+

1ψ1

) − ekx
(
ṽ−

2 ψ2

)
= φ(x)

(
1 − ṽ+

1αϕ−
1 − ṽ+

1βϕ−
2

) − c

2

ek(x+η)

√
s

(
ṽ−

2 γϕ−
1 + ṽ−

2 δϕ−
2

)
. (29)

It is easy to show that one has, for any suitable matrix S (Tr = trace),

ṽSϕ = Tr[SR], with R = ϕṽ (30)

and therefore

ṽ+
1αϕ−

1 = Tr
[
α

(
ϕ−

1 ṽ+
1

)] = Tr[αV 1] (31)

where

V 1 = ϕ−
1 ṽ+

1 =




dλ1 dλ2 eky12 . . . dλN eky1N

dλ1 e−ky12 dλ2 . . . dλN eky2N

...
...

...
. . .

dλ1 e−ky1N dλ2 e−ky2N . . . dλN


 . (32)

Then,

ṽ+
1βϕ−

2 = Tr
[
β
(
ϕ−

2 ṽ+
1

)] = Tr[βU 21] (33)

with U 21 being defined by equation (22);

ṽ−
2 γϕ−

1 = Tr
[
γ
(
ϕ−

1 ṽ−
2

)] = Tr[γW 12] (34)

where

W 12 = ϕ−
1 ṽ−

2 =




dλ′
1 e−kζ +

11 dλ′
2 e−kζ +

21 . . . dλ′
M e−kζ +

M1

dλ′
1 e−kζ +

12 dλ′
2 e−kζ +

22 . . . dλ′
M e−kζ +

M2

...
...

...
. . .

dλ′
1 e−kζ +

1N dλ′
2 e−kζ +

2N . . . dλ′
M e−kζ +

MN


 , ζ +

li = yi + zl, (35)

and, at last,

ṽ−
2 δϕ−

2 = Tr
[
δ
(
ϕ−

2 ṽ−
2

)] = Tr[δU 2] (36)

where

U 2 = ϕ−
2 ṽ−

2 =




dλ′
1 e−2kz1 dλ′

2 e−kz+
12 . . . dλ′

M e−kz+
1M

dλ′
1 e−kz+

12 dλ′
2 e−2kz2 . . . dλ′

M e−kz+
2M

...
...

...
. . .

dλ′
1 e−kz+

1M dλ′
2 e−kz+

2M . . . dλ′
M e−2kzM


 , z+

ls = zl + zs. (37)

Then, to sum up, we are led to the result

ψ(x) = φ(x) {1 − Tr[αV 1] − Tr[βU 21]} − c

2

ek(x+η)

√
s

{Tr[γW 12] + Tr[δU 2]} . (38)

In order to calculate the traces, we first observe that all the matrices constructed by product of
vectors are of rank 1 [17]; then, denoting by |M | the determinant of a matrix M , we use the
following theorem [3]:
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If S is a non-singular matrix and R is a matrix of rank 1, then

Tr[S−1R] = 1 − |S − R|
|S| . (39)

So, we are allowed to write, recalling equations (26) and (27),

Tr[δU 2] = 1 −
∣∣A2 − U 21A

−1
1 U 12 − U 2

∣∣∣∣A2 − U 21A
−1
1 U 12

∣∣ , (40)

and since

U 21A
−1
1 U 12 = ϕ−

2

(
ṽ+

1A
−1
1 ϕ+

1

)
ṽ−

2 = Tr
[
A−1

1

(
ϕ+

1 ṽ
+
1

)]
ϕ−

2 ṽ−
2 = Tr

[
A−1

1 W 1
]
U 2, (41)

where

W 1 = ϕ+
1 ṽ

+
1 =




dλ1 e2ky1 dλ2 eky+
12 . . . dλN eky+

1N

dλ1 eky+
12 dλ2 e2ky+

2 . . . dλN eky+
2N

...
...

...
. . .

dλ1 eky+
1N dλ2 ekx+

2N . . . dλN e2kyN


 , y+

ij = yi + yj , (42)

we achieve the result

U 21A
−1
1 U 12 =

(
1 − |A1 − W 1|

|A1|
)

U 2 (43)

and therefore

Tr[δU 2] = 1 −
∣∣A2 − (

1 − |A1−W 1|
|A1|

)
U 2 − U 2

∣∣∣∣A2 − (
1 − |A1−W 1|

|A1|
)
U 2

∣∣ . (44)

We follow the same procedure to obtain

Tr[γW 12] = −Tr
[
DU 21A

−1
1 W 12

]
(45)

and since

U 21A
−1
1 W 12 = ϕ−

2

(
ṽ+

1A
−1
1 ϕ−

1

)
ṽ−

2 = Tr
[
A−1

1

(
ϕ−

1 ṽ+
1

)]
ϕ−

2 ṽ−
2 = Tr

[
A−1

1 V 1
]
U 2

=
(

1 − |A1 − V 1|
|A1|

)
U 2 (46)

it follows

Tr[γW 12] = −
(

1 − |A1 − V 1|
|A1|

)
Tr[δU 2]. (47)

Going on,

Tr
[
βU 21

] = −Tr
[
A−1

1 U 12DU 21
] = −Tr

[
DU 21A

−1
1 U 12

]
, (48)

U 21A
−1
1 U 12 = ϕ−

2

(
ṽ+

1A
−1
1 ϕ+

1

)
ṽ−

2 = Tr
[
A−1

1

(
ϕ+

1 ṽ
+
1

)]
ϕ−

2 ṽ−
2 = Tr

[
A−1

1 W 1
]
U 2

=
(

1 − |A1 − W 1|
|A1|

)
U 2, (49)

so that

Tr[βU 21] = −
(

1 − |A1 − W 1|
|A1|

)
Tr[δU 2]. (50)
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Eventually,

Tr[αV 1] = Tr
[
A−1

1 V 1
]

+ Tr
[
A−1

1 U 12DU 21A
−1
1 V 1

]
= Tr

[
A−1

1 V 1
]

+ Tr
[
DU 21A

−1
1 V 1A

−1
1 U 12

]
, (51)

so that, being

U 21A
−1
1 V 1A

−1
1 U 12 = ϕ−

2

(
ṽ+

1A
−1
1 ϕ−

1

)(
ṽ+

1A
−1
1 ϕ+

1

)
ṽ−

2

= Tr
[
A−1

1

(
ϕ−

1 ṽ+
1

)]
Tr

[
A−1

1

(
ϕ+

1 ṽ
+
1

)]
ϕ−

2 ṽ−
2

= Tr
[
A−1

1 V 1
]
Tr

[
A−1

1 W 1
]
U 2, (52)

we obtain

Tr[αV 1] =
(

1 − |A1 − V 1|
|A1|

) {
1 +

(
1 − |A1 − W 1|

|A1|
)

Tr[δU 2]

}
. (53)

Therefore we see that, in principle, equations (44), (47), (50) and (53), introduced in
equation (38), solve our problem.

4. Calculation of the determinants

We can now proceed to examine the problem of calculating the determinants in the previous
equations. An immediate simplification arises, since |A1 − V 1| = 1, as follows from
equations (20) and (32). Since the explicit limits N → ∞ and M → ∞ can be performed
independently, we can first make N → ∞ and evaluate |A1| and |A1 − W 1|. |A1| is nothing
but the Fredholm determinant [16] 	1(λ) relative to the Fredholm integral equation of the
second kind with kernel

K(yi, yj ) = Kij = e−kyij V (1)(yj ) (54)

and can be written as

|A1| = 	1(λ) =

∣∣∣∣∣∣∣∣∣∣∣

1 + λK11 dξ λK12 dξ . . . λK1N dξ

λK21 dξ 1 + λK22 dξ . . . λK2N dξ

...
...

. . .
...

λKN1 dξ λKN2 dξ . . . 1 + λKNN dξ

∣∣∣∣∣∣∣∣∣∣∣
(55)

where the following expansion can be used [19, 18]:

	1(λ) = 1 + λ

N∑
p1=1

Kp1p1 dξ +
λ2

2

N∑
p1,p2=1

∣∣∣∣∣Kp1p1 Kp1p2

Kp2p1 Kp2p2

∣∣∣∣∣ dξ 2

+ · · · +
λN

N !

N∑
p1,p2,...,pN =1

∣∣∣∣∣∣∣∣∣∣∣

Kp1p1 Kp1p2 · · · Kp1pN

Kp2p1 Kp2p2 · · · Kp2pN

...
...

. . .
...

KpN p1 KpNp1 · · · KpN pN

∣∣∣∣∣∣∣∣∣∣∣
dξN . (56)

Now we can perform explicitly the limit N → ∞, and obtain the everywhere convergent
series [20] (in other terms, 	1(λ) is an entire function of λ)
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	1(λ) = 1 +
∞∑

n=1

λn

n!
Dn , (57)

Dn =
∫ b

a

dyn · · ·
∫ b

a

dy2

∫ b

a

dy1

∣∣∣∣∣∣∣∣∣∣∣

K(y1, y1) K(y1, y2) · · · K(y1, yn)

K(y2, y1) K(y2, y2) · · · K(y2, yn)

...
...

. . .
...

K(yn, y1) K(yn, y2) · · · K(yn, yn)

∣∣∣∣∣∣∣∣∣∣∣

=
∫ b

a

dyn · · ·
∫ b

a

dy2

∫ b

a

dy1

∣∣∣∣∣∣∣∣∣∣∣

1 e−ky12 · · · e−ky1n

e−ky12 1 · · · e−ky2n

...
...

. . .
...

e−ky1n e−ky2n · · · 1

∣∣∣∣∣∣∣∣∣∣∣
V (1)(y1)V

(1)(y2) · · · V (1)(yn).

(58)

Analogously, 
1(λ) is the companion determinant (but not strictly a ‘Fredholm determinant’,
since it is not directly related to the kernel of an integral equation)

|A1 − W 1| = 
1(λ) =

∣∣∣∣∣∣∣∣∣∣∣

1 + λH11 dξ λH12 dξ . . . λH1N dξ

λH21 dξ 1 + λH22 dξ . . . λH2N dξ

...
...

. . .
...

λHN1 dξ λHN2 dξ . . . 1 + λHNNdξ

∣∣∣∣∣∣∣∣∣∣∣
(59)

where

Hij = H(yi, yj ) = (e−kyij − eky+
ij )V (1)(yj ) (60)

and it can be expanded in the same way, as


1(λ) = 1 +
∞∑

n=1

λn

n!
Ln , (61)

Ln =
∫ b

a

dyn · · ·
∫ b

a

dy2

∫ b

a

dy1

∣∣∣∣∣∣∣∣∣∣∣

1 − e2ky1 e−ky12 − eky+
12 · · · e−ky1n − eky+

1n

e−ky12 − eky+
12 1 − e2ky2 · · · e−ky2n − eky+

2n

...
...

. . .
...

e−ky1n − eky+
1n e−ky2n − eky+

2n · · · 1 − e2kyn

∣∣∣∣∣∣∣∣∣∣∣
×V (1)(y1)V

(1)(y2) · · · V (1)(yn). (62)

Now, we can define the function

h(λ) = 1 − |A1 − W 1|
|A1| (63)

and Tr[δU 2] is calculated by performing the limit M → ∞:

Tr[δU 2] = 1 − |A2 − g(λ)U 2|
|A2 − h(λ)U 2| , with g(λ) = 1 + h(λ). (64)

By using previous considerations it is not difficult to show that (q = g, h)
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|A2 − q(λ)U 2| = �2(λ) = 1 +
∞∑

n=1

λn

n!
Qn , (65)

Qn =
∫ d

c

dzn · · ·
∫ d

c

dz2

∫ d

c

dz1

×

∣∣∣∣∣∣∣∣∣∣∣

1 − q(λ) e−2kz1 e−kz12 − q(λ) e−kz+
12 · · · e−kz1n − q(λ) e−kz+

1n

e−kz12 − q(λ) e−kz+
12 1 − q(λ) e−2kz2 · · · e−kz2n − q(λ) e−kz+

2n

...
...

. . .
...

e−kz1n − q(λ) e−kz+
1n e−kz2n − q(λ) e−kz+

2n · · · 1 − q(λ) e−2kzn

∣∣∣∣∣∣∣∣∣∣∣
×V (2)(z1)V

(2)(z2) · · · V (2)(zn). (66)
Therefore, all determinants can be evaluated as entire series of λ.

5. Limiting cases

It is simple to show that our formulae, when V (2) = 0, or V (1) = 0, give the pure transmission
and the pure reflection cases, respectively. Let us consider V (2) = 0: only the first trace
survives in equation (38), and equation (53) gives

Tr[αV 1] = Tr
[
A−1

1 V 1
] = 1 − 1

	1(λ)
. (67)

The formula for the transmission is therefore obtained [2]:

G(x, s; η) = G0(x, s; η)

	1(λ)
. (68)

If V (1) = 0, on the other hand, only the last trace in equation (38) is different from zero.
Equation (64), where h(λ) = 0, gives

Tr[δU 2] = Tr
[
A−1

2 U 2
] = 1 − �2(λ)

	2(λ)
(69)

where �2 is �2 of equation (65) with q(λ) = 1, and 	2 is the analogous of 	1 of
equation (55) for the potential V (2). So, we obtain

G(x, s; η) = G0(x, s; η) − c

2

ek(x+η)

√
s

[
1 − �2(λ)

	2(λ)

]
(70)

that is the formula for the reflection [3].

6. A simple application

In order to show an example with affordable calculations, let us consider the potentials

V (1)(y) = V1δ(x1 − y), V (2)(z) = V2δ(x2 − z), x2 > x1. (71)

In this case, the integrals occurring in calculating determinants are straightforward, and all the
expansions stop at n = 1 [2], so obtaining (λ1,2 = λV1,2)

1 − 1

|A1| = λ1

1 + λ1
, h(λ) = 1 − |A1 − W 1|

|A1| = λ1

1 + λ1
e2kx1 , (72)

from which equations (64) and (65) give
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Tr[δU 2] = 1 − 1 + λ2[1 − g(λ) e−2kx2 ]

1 + λ2[1 − h(λ) e−2kx2 ]
= (1 + λ1)λ2 e−2kx2

D(λ)
(73)

and the other terms of equation (38) become

Tr[γW 12] = −λ1λ2 e−2kx2

D(λ)

Tr[βU 21] = −λ1λ2 e−2kx12

D(λ)

Tr[αV 1] = λ1(1 + λ2)

D(λ)

(74)

where

x12 = x2 − x1, D(λ) = 1 + λ1 + λ2 + λ1λ2(1 − e−2kx12). (75)

The final result is

G(x, s; η) = c

2

[
(1 + λV2) e−c(x−η)

√
s

√
sD(λ)

− λV2 e−c(2x2−x−η)
√

s

√
sD(λ)

]
. (76)

The spacetime propagator G(x, t; η) is obtained from G(x, s; η) by Laplace inversion, using
for example the approximation methods shown in [21, 22].

7. Conclusions

We have presented a theory that is suitable to solve the Schrödinger equation for a particle
localized between two potential barriers. The main result is that the general solution, although
rather complicated, is exact. Only the simple case of two delta barriers has been explicitly
solved, but in our opinion the method can be applied also to more realistic barriers, owing to
the fast convergence of the series expressing determinants and to the effective techniques of
inverting Laplace transforms.

A drawback of this approach is evident: it is applicable only to one-dimensional problems,
due to the fact that the kernel for the three-dimensional ones is not separable, even outside the
potential [1, 4]. However, our work in this direction is in progress.
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[19] Smirnov V 1975 Course de Mathématiques Supérieures vol 4, part 1 (Moscou: Mir) chapter 1, section 7
[20] Whittaker E T and Watson G N 1969 A Course of Modern Analysis (Cambridge: Cambridge University Press)

chapter 11, section 11.2
[21] Cacciari I and Moretti P 2006 Phys. Lett. A 359 396
[22] Cacciari I, Lantieri M and Moretti P 2007 Phys. Lett. A 365 49

http://dx.doi.org/10.1016/j.physleta.2006.06.061
http://dx.doi.org/10.1016/j.physleta.2006.12.052

	1. Introduction
	2. The integral equation
	3. The double barrier
	4. Calculation of the determinants
	5. Limiting cases
	6. A simple application
	7. Conclusions
	References

